Spring 2018 MATH2060A 1

Assignment 10

Deadline: April 6, 2018.

Hand in: Supp. Ex. no 2, 3.

Supplementary Exercise

1. (a) Show that
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2. This exercise suggests an alternative way to define the logarithmic and exponential func-
tions. Define nog : (0,00) — R by
1
nog(x) = / —dt.
1t

(a) nog(x) is strictly increasing, concave, and tends to co and —oo as x — oo and 0
respectively.

(b) nog(zy) = nog(z) + nog(y).

(c) Define e(z) to be the inverse function of nog. Show that it coincides with E(x).

Note: f is concave means — f is convex. You cannot assume log x has been defined.

3. (a) Show that there is a unique solution ¢(z),z € R, to the problem
f"=1f f0)=1, f(0)=0.
(b) Letting s(z) = ¢/(z), show that s satisfies the same equation as ¢ but now s(0) =
0, §(0) =1.
(c) Establish the identities, for all x,

and
c(z +y) = c(z)cy) + s(x)s(y).

(d) Express ¢ and s as linear combinations of e* and e™®. ( ¢ and s are called the hy-

perbolic cosine and sine functions respectively. The standard notations are coshx
and sinh z. Similarly one can define other hyperbolic trigonometric functions such as
tanh x and cothz.)



